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spacing of either d2o~o or d3o~0. Because of the threefold 
axis we choose d30~0 as the most probable one. 

Positions associated with one threefold axis and 
lying within the unit cell are (x,y,z), ( 1 - y ,  1 + x - y ,  
z+½), ( y - x , l - x , z + ~ ) .  From equation (1) we find: 

(1--ym)--(Xm)=½ and (ym--Xm)- - (1 -ym)=½,  

from which Xm = 0 and Ym = 2. 
The average of 22 atoms is: Xm = 0"0899, Ym = 0"6715 

and Zm=0"07611, whereas the predicted values are: 
xm=O, ym=0"6667 and Zm=0'08333. 

The idealized position (0, 2,1/12) and its equivalents 
form a rhombohedral sublattice with arh = (½) [1i01] = 
13"141 A and cqh=37°30 '. Each molecule is sur- 
rounded by ten molecules (see Fig. 3), one at a distance 
6.101/~ (bond p), three at a distance 7.811 A (bond q) 
and six at a distance 8.449 A (bond r). 

These last six bonds occur in a slice d0006. However, 
the form {0001} has not been observed and therefore 
the bonds r will be weak, so we are left with one bond 
p and three bonds q for each molecule. One bond p 
and one bond q constitute together a PBC, the period 
of which is equal to the edge of the rhombohedral sub- 
cell. The rhombohedron determined by these bonds is 
{i011} and not {10il} as described by Craven (1964). 
A slice di0 n is shown in Fig. 3(b). 

It may be remarked that the molecular packing can 
be considered as a distorted diamond or arsenolite 
structure. 

Conclusion 

The foregoing examples show that sometimes the ob- 
served morphology is not in accordance with the 
morphology predicted from cell dimensions and space 

group by a reversed application of the law of Donnay 
and Harker. In these cases it is possible to locate ap- 
proximately the centres of molecules. 

Further information on the position of these centres 
can be obtained by applying the PBC method. It gives 
information either about one or two of the coordinates 
of the centres, or about bond strengths, and it further 
corroborates the location of the centre. 

In this way such structural features as complete or 
partial pseudosymmetry are easily revealed. This may 
be a useful clue in arriving at a trial model of the 
structure in the early stages of a structure analysis. 
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Diffraction of X-rays by the Faulted Cylindrical Lattice of Chrysotile 
I. Numerical Computation of Diffraction Profiles 
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The current theory of the diffraction of X-rays by a cylindrical lattice is supplemented, and the influence 
of some misfit boundaries discussed. The numerical computation of diffraction profiles of some 
reflexions was carried out, and the influence of the curvature, wall thickness, incompleteness and the 
presence of several types of misfit boundaries determined. 

Introduction 

The theoretical aspects of the diffraction of X-rays by 
a cylindrical lattice of chrysotile were studied very 
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thoroughly by Jagodzinski & Kunze (1954a, b,c) and 
by Whittaker (1955a, c), who derived formulae for the 
diffracted intensity by the ideal complete cylindrical 
lattice, and discussed the influence of azimuthal misfits. 
Kunze (1956a, b) derived formulae for the diffracted 
intensity by the ideal incomplete cylindrical lattice. 

The object of this paper is to give a more complete 
analysis of the form of diffraction profiles, based on 
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numerical computations carried out with the IBM 7044 
system in the Computing Centre of McGill University. 
For this purpose the expressions for the diffracted in- 
tensity, both for complete and incomplete cylinders, 
were derived by the same method [similar to the one 
used by Waser (1955)], so that the formulae for both 
cases are easily comparable. In addition to this, the 

a 
c 

(a) (b) 

Fig. 1. (a) The atomic net of a cylindrical lattice. (b) The 
projection of a cylindrical lattice consisting of 9 atomic nets. 

(a) 

Fig. 2. The complete (a), and incomplete (b) cylindrical lattice. 

Type I Type II 

Type III 

Fig.3. The cylindrical lattice with (a) cylindrical azimuthal 
boundary, (b) cylindrical axial boundary, (c) planar axial 
boundary. 

influence of some defects of the cylindrical lattice on 
the diffraction intensity not considered in the above- 
noted papers was studied. 

Defects of coherence of the cylindrical lattice 

This paper is confined to the anorthic cylindrical lattice 
(Whittaker, 1955b) consisting of coaxial cylindrical nets 
each of which is occupied by only one sort of atom 
[Fig. l(a)]. If these coaxial cylindrical nets, having dif- 
ferent diameters but the same number of b translations 
subtended by a unit azimuthal angle, are stacked in 
such a way that they compose a quasi-periodic assem- 
bly, we get a three-dimensional lattice which we call 
an ideal cylindrical crystal. Fig. l(b) shows a projection 
of such a lattice consisting of 9 coaxial nets. We call 
such a lattice ideal because it can be transformed by 
an appropriate elastic deformation into the conven- 
tional ideal three-dimensional translation lattice. The 
ideal cylindrical crystal can be complete if circular 
cylindrical nets are closed [Fig. 2(a)] or incomplete [Fig. 
2(b)]. 

The regularity of the ideal cylindrical lattice can be 
disturbed in such a way that the cylindrical crystal 
consists of mosaic blocks separated by some type of 
misfit boundary. In this paper we shall consider the 
following types of misfit boundaries. 

Type I. Cylindrical azimuthal boundary. This boundary 
has the form of a coaxial cylindrical surface and sep- 
arates two azimuthally displaced mosaic blocks. The 
number of translations in the azimuthal direction b 
per unit angle can be different in both blocks, but there 
is no relative displacement between the blocks along 
the direction of the axis of the cylinder [Fig. 3(a)]. 
Type II. Cylindrical axial boundary. The boundary is 
a coaxial cylindrical surface separating two mosaic 
blocks axially shifted. The number of translations in 
both blocks per unit angle is the same and both blocks 
have no relative azimuthal displacement [Fig. 3(b)]. 
Type III. Planar axial boundary. The boundary is 
formed by a plane containing the cylinder axis and a 
radius a. The blocks are axially shifted only [Fig. 3(c)]. 
Type IV. Planar incoherent boundary. The boundary 
is formed by a plane as in type III. The plane separates 
two mosaic blocks that are axially radially and angu- 
larly displaced, so that the lattices of both blocks are 
completely independent. 

The cylindrical axial and the cylindrical azimuthal 
boundary (types I and II) can be combined in such a 
way that the resulting cylindrical boundary has an 
axial as well as an azimuthal component. 

The intensity of radiation diffracted by 
an ideal cylindrical lattice 

Imagine the cylindrical crystal as an assembly of com- 
plete or incomplete coaxial cylindrical nets, and every 
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net as an assembly of parallel circular (complete or 
incomplete) chains. First, we shall derive the amplitude 
of radiation diffracted by a chain having the form of a 
circular arc lying in a plane perpendicular to the axis 
of the cylinder. It is convenient to use a cylindrical 
coordinate system (~,z, ~0 in direct space and ~, (,co in 
reciprocal space). A chain in the j th  coaxial cylindrical 
net contains N atoms with atomic scattering factor J); 
its radius is ~ and the repeat distance of the atom along 
the chain is bs. The vth atom of the/zth chain in this 
j t h  net has the coordinates 0~, z#,, (o~u .. 

The amplitude A m is thus: 

A~l¢,co,0= 
N = I  

exp (27:i(z~u) Z exp [27ri~q~ cos (co-~0m.)]. 
v=O 

Using: 
o o  

exp (2rcix cos a)=  Z' i/cJe(2rcx) exp (rice) 
k=--oo 

and 
N--1 
Z" exp (ivx)=exp [ix(N-I)/2] 

v=O 

and expressing" 

sin Nx]2 
sin x/2 

~o#,, = ~o m + vbslQ s = ~oju + 2rcvI.A/" , 

where ~0ju is the azimuthal coordinate of the origin of 
the/zth chain on the j th  cylindrical net and ag" = 2rcQs/bj 
we get: 

o o  

Asu(¢,co,~ =fj  exp (2ni(zsu)__Z__l WkJk(2~Z¢O,) 

exp [ik(co-~Osu + re(N- 1)/vff + ~z/2)]. (1) 

Here J/c(27r~0j) is the Bessel function of the kth order 
and the weight factor, W/c is given as: 

sin rck NI, A." 
xW/c= sin nk/eff " (2a) 

For the special case of a circular chain we have .4/" = N, 
therefore: 

.A/" if k = 2.g', where 
2We = 2 is an integer (2b) 

0 for the remaining k .  

Another interesting special case occurs if we suppose 
the electron density distribution along the arc is con- 
stant and the integral number of electrons is unchanged. 
Then the weight factor 3W/c for an arc with central 
angle ~0 becomes: 

3 We = 2~reso" sin k~o/kfo, (2c) 

where a is the number of electrons on unit length. For 
the complete circle we get: 

4 W/c = 2zrOsa if k = 0 
W/c=O if k ¢ 0 .  

The distributions 1 W/c, 2 We, 3 W/c, 4 W/c are shown in 
Fig. 4. 

The amplitude of radiation diffracted by the j th  cy- 
M--1 

lindrical net is given by A j=  N Aju, where M is the 
lt=O 

number of chains comprising the j th  net. 
Because 

~su = ~s +/zc(cos ~)/O 
and 

zsu=zs+#c sin c~, 

where rpj and zs are the azimuthal and axial coordinates 
of the origin of the j th  net, we have: 

A~(~,co,~)=exp [2ni~e(sin a) ( M -  1)/2] 2~ q~e 
k ~ - - o o  

exp [ik(co + n ( U -  1)/.4P + re/2)], 
where: 

sin roMe(( sin ~ -  (k/2rcOj) cos ~) 
=J~ exp (2n(zj We) sin ne(( sin ~-(k/2nQs) cos ~) 

x Je(2n~0s) exp { - i k [ ~ o s - ( M -  1) (e cos c0/2es] } . 

The amplitude of the radiation diffracted by the 
assembly of coaxial nets is: 

o o  

A = Z" A s = exp [2zU((c sin ~) ( M -  1)/2] Z' Z' q~Se 
j j k=--oo 

exp {ik[co+rc(N-1)/.A/'+n/2]}. (3) 

The intensity of the diffracted radiation is: 

I =  IA 12 = Z" Z" Z" Z" ~j/c~bs~ , exp [ico(k- k')] 
j j ' k k "  

exp [irc(k-k') ( N -  1 +.# ' /2) / .# ' ] .  

1 
I!lj,I, I I~d, I I  ,h I I d~ 

I ,i I , I Ill . li I tll i ill , 
- 4 0  - 2 0  0 20  40  

(a) 

i 

i 
- 40  - 20  0 2'0 4~0 

(o) 

. . . . . . . . . .  I I  ,~ . . . . . . . . .  
1 . . . .  ' . . . .  L ' "  I ' i  I I1~ ' ! '  ~ . . . .  ' . . . .  

- 40  - 2 0  0 20 40 
(c) 

' ' 10 4 '0  - 4 0  - 2 0  0 2 
Id) 

Fig. 4. The  distr ibution of  the weight coefficient W~ for :  (a) the 
incomplete  cylindrical lattice, .¢" =20 ,  N =  5; (b) the com-  
plete cylindrical lattice, .#" = 20; (c) the incomplete  cylindri- 
cal lattice with cons tant  e lectron density a long the arcs o f  
~/2 az imuthal  extent ;  (d) the comple te  cylindrical lattice 
with constant  electron density a long the arcs. 
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The intensity diffracted by a single cylindrical crystal 
cannot be measured, because samples of the size used 
in X-ray experiments consist of millions of parallel 
crystals differently oriented about the cylindrical axis. 
The measured intensity is thus: 

Imeas = (I>o 

and as: 
1 if k=k '  

(exp [ico(k- k')])o~ = 0 if k # k' 

we have: 
o o  

Imeas= Z I S  ~b~l z • (4) 
k = - ~  j 

Intensity diffracted by a mosaic cylindrical crystal 

Type I. Cylindrical azimuthal boundary 
Consider an assembly of cylindrical crystals, each of 

which contains the same number of azimuthal bound- 
aries dividing it into mosaic blocks of the same size. 
The crystals of our assembly differ only in the magni- 
tude of azimuthal displacements corresponding to the 
individual boundaries. Let us further assume that the 
sample consists of such a number of parallel cylindrical 
crystals that every variant occurs with such a variety 
of orientations that it is possible to average indepen- 
dently over co. In the ideal cylindrical crystal {0~, the 
azimuthal coordinate of the origin of the j th  cylin- 
drical net was determined by the inner structure of the 
lattice. In the pth mosaic crystal of the assembly the 
azimuthal coordinate of the origin of the j th  cylindrical 
net is given by the expression ~0~ + A{0jv where A{ojv has 
the same numerical value for all cylindrical nets be- 
longing to the same mosaic block of the pth mosaic 
crystal. 

The intensity diffracted by the pth mosaic crystal is 
thus: 

jj" kk" 

exp [ico(k-k') exp [irc(k-k') (~4/'- 1 +uV'/2)/JV'] 
exp [i(kAqgjlo-k'A~oj v)] 

The mean intensity gained by averaging over co and p is: 

I=(Iv)o~v= X X q~J~'k (exp [-ik(A~ojv-A~oFv))v . 
k jj" 

The mean value of (exp [ -  ik({ojv- {0~'v)])v depends on 
the distribution of A~ojv-A~oj,v in the assembly. Let 
us suppose, for simplicity, that A{0jv-A~0j'v can, with 
the same probability, assume any value inside the in- 
terval -a j j , ,  + ej~,, but that outside this interval it has 
zero probability. The width of this interval depends on 
indices j and j '  of the cylindrical nets whose contri- 
bution we are considering. For example, if indices j 
a n d j '  refer to two different cylindrical nets of the same 
mosaic block of the pth mosaic crystal, then A~0jv- 
A~0j,v=0 for any value of p, and ejl ,=0. I f j  and j '  

refer to two different blocks of the mosaic crystal, the 
corresponding width of the interval 2c9F # 0 and cannot 
be further discussed unless additional assumptions 
about the statistics of the mosaic structure of our as- 
sembly are made. Let us take as the simplest assump- 
tion that the azimuthal rotations of the individual 
mosaic blocks are completely independent. Then cgFA 
is a constant independent of j and j '  unless j and j '  
refer to the cylindrical nets of the same mosaic block. 

With these assumptions, I =  27 27 ~Jeq>j*k (sin o~jrk)/ 
k j j "  

cgFk. It remains to specify cqF. Let us suppose that the 
rotations correspond to a few translations bj, so that 
=jF~nbj/oj, where n is a small integer. Consider the 
simpler case of the complete cylindrical crystal where 
k = 2~V), with 2 an integer and ~ j  the number of unit- 
cell translations b along with circumference of the j t h  
cylindrical net. Then k=jF ~2~4rjbflQj = 2~2n, if j and 
j '  refer to the different mosaic blocks, and the function 
(sin kc~jj,)/kejj, has the following values: 

k = 0  k>J f "  
j a n d j '  refer 
to the same block 1 1 

j and j '  refer 
to two different blocks 1 small number.  

With the use of these results the average intensity is: 

whole ~ 1 

I = l  27 q~j0[zq - Z" [1 S c//j~12 
j t = - o o  j 

2 

+1 z ~jx12+... +1-~ ~,~12], (5a) 
J J 

whole 
where Z" means summation over all cylindrical nets in 

J 
1 2 

the whole mosaic crystal, and 27 ,27 , . . . ,  S summations 
J J J 

over cylindrical nets in the 1st, 2nd and sth mosaic 

o o  

blocks respectively. The summation 27 does not con- 

tain the term with 2 =0. The interpretation of the ex- 
pression (5a) is then as follows: the terms containing 
Bessel functions of zero order do not contain any in- 
formation about the azimuthal distribution of the elec- 
tron density [this can be seen from equations (2d) and 
(3)]. For these terms the entire mosaic crystal diffracts 
as one coherent domain (i.e. the sum of the amplitudes 
is squared). For the terms containing high order Bessel 
functions the individual blocks of mosaic diffract as 
coherent domains. 

In the case of an incomplete cylindrical crystal, k 
can be any integer, so that for 0 < k <.A r, (sin ko~jj,)/ko~jj, 
has intermediate values. However, as can be seen in 
Fig. 4(a), the contributions are significant only in the 
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neighbourhood of k =LA p, unless the angular range of 
the incomplete cylindrical crystal is too small. With 
this restriction the approximate formula can be written: 

* whole 1 
I =  271 27 ~bj~lZ + 27, [I S #3.~] z 

k j k j 

2 
+127 ~jkl 2+ . . .  + l -  ~ ~Jgl']. (5b) 

J J 

Here Z refers to k's corresponding to the maximum 
k 

about k = 0  in Fig.4, 27' refers to the remaining k's. 
k 

The first term in formula (5b) corresponds approx- 
imately to the contribution from the assembly of cir- 
cular arcs having a constant electron density [compare 
Fig. 4(a) and 4(c)] and the same central angle ~0 as the 
chains in the incomplete cylindrical crystal. 

The individual blocks separated by azimuthal bound- 
aries do not necessarily have the same number of 
translations for a unit of azimuthal angle. The sth 
block can have .A/'8 translations with .A/'s increasing 
proportionally with 08, the mean radius of the sth 
block. This enables us to reduce substantially the strain 
energy in our models, which, for an ideal cylindrical 
crystal even with a wall thickness of a few translations, 
is intolerable. This point was stressed earlier in the 
papers of Whittaker and of Kunze. 

Type II. Cylindrical axial boundary 
Let us suppose a similar assembly of mosaic crystals 

as was considered in the previous case. The only dif- 

ference is that the shifts of mosaic blocks are now axial. 
In the ideal cylindrical crystal the axial coordinate zj 
of the origin of the j t h  cylindrical net was determined 
only by the inner structure of the lattice. Here it is 
given by zj + Azj~ where zj is determined by the struc- 
ture of the lattice and Azj~ is the axial shift of the j t h  
cylinder in the pth mosaic crystal due to the mosaic 
disorder. After averaging ovei o9 and p the expression 
for diffracted intensity is: 

I =  27 Z ¢'~kC~,k (exp [2rci((Az~-Azj,~)])~. 
k j j "  

If the same assumptions are made about the distribu- 
tion of Az~-Azj ,p  in this assembly as in the previous 
case, we get: 

1-- 27 Z ~Sk~k (sin (~Sj,)/(c~Sj,. 
k j j "  

Assuming the range of axial shifts 2c9j, ~nc for j and 
j '  belonging to different mosaic blocks, and 2~j, = 0  
for j and j '  belonging to the same mosaic block, we 
have for (sin (ejj,)/ejj, 

i f=0 (> 1/c 
j and j '  refer 
to the same block 1 1 

j and j '  refer 
to different blocks 1 small.  

The first column applies to the equator of the diffrac- 
tion diagram, the second to the first and higher layer 
lines. 

(a) 

(c) 
i i ; 

0"I00 0"1 '50  0"200 0"250 0"3;0 0"350 0"400 0"450 0"500 0"550 

~(A -I) 

Fig. 5. The distribution of the diffracted intensity on the first layer line diffracted by a model of a complete cylindrical crystal 
consisting of I0 silica-brucit¢ double layers separated by: (a) 9 cylindrical azimuthal boundaries; (b) 8 cylindrical azimuthal 
boundaries similar to the previous model except that the boundary with the largest radius has been omitted; (c) 4 cylindrical 
boundaries equally distributed. 
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The diffracted intensity is thus: 

oo whole 

I =  271 27 ~J~l z if ( = 0  
k = - - o o  j 

(5c) 

~o 1 2 

I =  27 [I 27 ~¢~12-4-1 s ~J/cl 2 + . . .  + 1 ~  ~J/cl2] • 
k------co j j j 

It can be seen from these equations that for the equa- 
torial diffraction the whole mosaic crystal is a coherent 
domain, because the equator contains information 
about the projection of the electron density perpen- 
dicular to the equatorial plane only. On the other hand, 
the diffraction on the upper layer lines is also affected 
by .the z coordinates so that only individual mosaic 
blocks must be considered as coherent domains. 

Type I and type II. Cylindrical azimuthal and cylindrical 
axial boundaries 

The formula for the diffracted intensity for mosaic 
crystals containing both axial and azimuthal bound- 
aries is derived in a manner similar to the formula for 
the individual displacement and is as follows: 

* whole 
for ~=0 ;  I =  S [  L" ~j~[2 

k j 
1 az 2az qaz 

+ 27 [I 27 ~J~12+l 27 ~Jgl2+. . .  +12: ~j~l 2] 
k j j j 

* 1 ax  2ax  

for (_> 1/c, I =  27 [I 27 ~jklz+ 27 ~ M 2 + . . .  
k j j 

S a x  1 

+1 27 ~Pc] 2] -t- X '  [I 27 4'¢~1 z 
y k y 
2 S 

+l  27 ~Jtd2+ • • • -{-I 27 ~ J / d  2] " 
y y 

(Sd) 

Here the symbols related to the sums over k have the 
l az  2az qaz 

same meaning as previously; 27,27,27 denote sum- 
mations where only the azimuthal mosaic boundaries 

l a x  2ax  sax  

are considered as limiting the mosaic blocks; £', £', L" 
are summations considering only the axial boundaries 

1 2 

and neglecting the azimuthal ones; 27, 27, 2~ are sum- 
mations where there is no difference made between 
axial and azimuthal boundary. 

Type III. Planar axial boundary 
Let us consider an assembly of parallel cylindrical 

mosaic crystals, where the mosaic block boundaries are 
of the planar axial type. Every mosaic crystal has N 
translations in the direction of the b axis, divided in 
s mosaic blocks in such a way that the first block has 
N1, the second Nz, and the last Ns translations. Indi- 
vidual mosaic crystals again differ only in the magni- 
tude of axial shifts of mosaic blocks; otherwise they 
are identical. 

In the previous case atoms of the three-dimensional 
cylindrical lattice grouped into a number of two-di- 
mensional cylindrical nets ( j =  constant) were con- 
sidered. Shifts of Azj caused by the presence of cylin- 
drical axial mosaic boundaries were associated with 
them. 

In this case atoms are grouped in two-dimensional 
planar nets, (v = constant) shifted by Azvp owing to the 
presence of axial planar boundaries. 

The intensity of radiation diffracted by the pth 
mosaic crystal is thus: 

N--  1 M - -  1 whole 

Iv=lAv[2=[ 27 S 27 fjexp[2~zi~(zju 
v = 0  p = 0  j 

+Azltv) ] exp [2z~ioj c o s  ((-D--  ~//.tv)][ 2 • 

(a) 

(b) 

I I I I 1 I I t 

0"10 0"15 0'20 0"25 0"30 0"35 0"40 0"45 

z~(A -1) 

Fig. 6. The distribution of the diffracted intensity on the first layer line diffracted by a model of an incomplete cylindrical crystal 
with azimuthal extension of ~z. Crystal consists of 10 silica-brucite double layers separated by (a) 9 equally spaced cylindrical 
azimuthal boundaries, (b) 4 equally spaced cylindrical azimuthal boundaries. 
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Inserting for z~u and Csuv and summing over j and/z  
oo N = I  

I~=  I 27 27 exp [ik(co-2v/~V')]~i ~ exp 2~ri(Az,,][ z , 
k = - - e o  v = 0  

where 

whole sin rcMc(( sin c~--(k/2n0y) cos a) 
~uz= 27 

sin zcc(( sin c~- (k/27r0y) cos ~t) 

x exp [2rUfz~]J~,(2r~o~) exp { - i k [ ¢ ~ + ( M +  1) 

x (cos a)/2es]} • 

Averaging over co and p we get the mean intensity: 

oo N - - 1  N - - I  

I =  X X X  
k = - - e o  v = 0  v ' = 0  

I~1 ~ exp [2zcik(v- v')l.#'] 

x (exp [2rci~(Azvp- Azcp)])#. 

Assuming that the distribution of Azvp--Azv,  p has the 
same properties as the distribution of Az~-Az~ ,~  we 
have: 

oo who le  

~=0,  I =  2; I 27 g~ exp (2r~ikv/.4")l 2 
k = - - ~ o  v = O  

oo s i n 2 z & N / . . #  . 

=k---~X I~'~[ 2 sin2z&/~ V, 

oo [ sin2~rkNi/W 
~_ 0, l=k= "~'-ool g tel2 sin2~rk/W 

sin2~zk N2/~4/" 
sinEzck/,#" 

sin~"~U;/{ ] 
+ . . . +  sinEz&/~ V. j .  (5e) 

As in the case of cylindrical axial boundaries, for 
the equatorial reflexions the whole mosaic crystal is a 
coherent domain. For layer lines individual mosaic 
blocks are independent domains. 

Type IV. Planar incoherent boundaries 
If we assume that the mosaic blocks separated by 

planar incoherent boundaries are completely indepen- 
dent, then the diffracted intensity is the sum of the 
intensities diffracted by individual mosaic blocks (in- 
complete cylindrical lattices). 

The programs for the computation of expressions (5a), 
(5b), and (5d) were written in the Fortran 4 language 
for the IBM 7044 system. The following limitations 
were introduced because of practical considerations: 
(i) In summations over k, only terms with J~(2zc~e~)_> 

e-~0 are included. 
(ii) In case of incomplete cylinders, only contributions 

with WZ~ > W0Z/100 are included. 
Even with this limitation the computing was very time- 
consuming, so that for a model with a mean radius 

,l: l ; t  
"t I ~ \  

!II / ' , t  
,ii' ' t~ 

/7/',,'; 
,,, / \ ', ,., 

. /  #' / I \ ' - . . ._.  
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0420 0.330 0.340 0.350 0.3600.g~0 0.360 0.3~0 0400 
{ (A -~) 

(e) 

i ;  i 

II! t~ ; ~'i fi l E r, 

i i x l  \ ~ .  • r .  

I J  < , v ~  
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Fig.7. Some diffraction profiles computed for the model of the complete cylindrical lattice consisting of 10 silica-brucite double 
layers separated by 9 cylindrical azimuthal boundaries. Mean radius 85 A, shown by dot-dashed line, 135 A by dashed line, 
235 A by solid line. (a) 060; (b) 011 ; (c) 031 ; (d) 033. 
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135 A and a wall thickness of 5 translations the com- 
putation of one point of the intensity curve 011 took 
5 see for a complete cylindrical crystal, and 150 sec 

8- 

6 -  

A 4 

2- 

0 
0 

I 
8-  

\ ~. 6- 

2- 

1;0 260 3;0 O0 1;0 200 3;0 
(A) (A) 
(a) (b) 

\ 
% 

Fig. 8. The per cent relative shift versus the mean radius of 
(a) the reflexions 011, 031, 033 and 060 (top to bottom) 
for the complete cylindrical lattice of the same type as in 
Fig.7, (b) the 011 reflexion for the cylindrical lattice of 
different completeness. From top to bottom, complete 
cylinder, ½ cylinder, ¼ cylinder, ~- cylinder. The number of 
double layers and imperfections as in Fig. 7. 

for an incomplete one (arc of 45 °). For larger mean 
radii the computing time was longer. 

The reflexions of X-rays diffracted by the chrysotile 
lattice can be divided into two groups. One contains 
reflexions where the intensity is mostly determined by 
the contributions of the zero-order Bessel functions. 
These reflexions provide no information about the 
azimuthal variations of the electron density, as these 
reflexions are observed even when diffracted by a cy- 
lindrical lattice where the electron density does not 
depend on the azimuth [compare expression (2d)]. 
Their reciprocal coordinates ~, ~ correspond to the re- 
flexions hOl of the limiting crystal (the crystal obtained 
by allowing the radius Q of an incomplete cylindrical 
crystal to approach infinity while preserving its axial 
orientation). The other group contains reflexions car- 
rying information about the azimuthal distribution of 
the electron density and about the curvature of the 
lattice, because the dominant contributors are the 
terms with higher-order Bessel functions. Their recip- 
rocal coordinates correspond to the reflexions Okl of 
a limiting crystal. As the behaviour of both groups of 
reflexion is different when the geometry of the cylin- 
drical crystal is changed, we treat them separately. 

0"02- 

A 

"T 0< 
0"01- 

0 100 2C)0 360 

(A) 

Fig. 9. The dependence of the half-height width of the reflexions 
060 (dot-dashed line), 033 (solid line) and 011 (dashed line) 
on the mean radius of the cylindrical lattice. The number of 
double layers and imperfections as in Fig. 7. 

//f,V, 
I/t\\ ~I/i\ ', 

I/ t i " , .  

I "" \ "" ~ ~ "" s, 

. /  
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Fig. 10. The profile of the 011 reflexion computed for an 
incomplete cylindrical lattice with extension n/4 (~ of a 
cylinder) and mean radius 85 A, dashed line; 135/~, solid 
line; and 235 A, dot-dashed line. The number of double 
layers and imperfections as for Fig. 7. 

Reflexions hOl 
The intensity of hOl reflexions is determined mainly 

by the zero-order Bessel functions. As already shown 
by Whittaker (1955a), their width is inversely propor- 
tional to the wall thickness in almost exactly the same 
way as it is for the normal linear crystal. By the nu- 
merical computation of the profile of the reflexions 200 
and 202 of the cylindrical lattice of chrysotile, we found 
that neither the width nor the position of these reflex- 
ions depends on the radius of the cylindrical crystal. 
The computation was performed for mean radii 85, 
135 and 235 A. It is therefore possible to use reflexions 
h00 for the determination of the overall wall thickness 
of the cylindrical crystal, and reflexions hOl for the 
determination of the radial dimension of a mosaic block 
separated by cylindrical axial boundaries. 

Reflexions Okl 
The form of the reflexions Okl is essentially depen- 

dent on the number of azimuthal cylindrical bound- 
aries. This question was already dealt with by Whit- 
taker (1957), who assumed that the chrysotile lattice, 
consisting of cylindrical double layers (silicate layer 
and brucite layer), contains the maximum number of 
azimuthal boundaries; this means that every double 
layer is separated from the neighbouring one by a cy- 
lindrical azimuthal boundary. Every double layer is 
thus independent and its number of translations b on 
the unit of azimuthal angle increases with increasing 
mean radius of a mosaic block. This hypothesis is very 
plausible and leads to the lowest stress in the cylindrical 
lattice. The diffraction profiles calculated with this as- 
sumption do not greatly differ from the experimental 
ones. 
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To get a better insight into this question and to have 
a better basis for the interpretation of the experimen- 
tally determined profiles of Okl reflexions, we per- 
formed numerical computations of profiles of reflex- 
ions lying on the first layer line of the chrysotile dif- 
fraction diagram for models having a lower number 
of cylindrical azimuthal boundaries than the maximum 
assumed by Whittaker. Our model of the chrysotile 
fibre has a wall thickness of 5 unit cells and a mean 
radius 135 A. The number of translations b on this unit 
of azimuthal angle corresponds to the mean radius of 
every mosaic block divided by 9.25 A. The positions 
of atoms and unit cell dimensions correspond to those 
of clinochrysotile, Whittaker (1956). We computed 
three cases: 

1. The model having 10 blocks separated by 9 cylin- 
drical azimuthal boundaries (Whittaker model) [Fig. 
5(a)]. 

2. The model having 9 blocks separated by 8 cylin- 
drical azimuthal boundaries, distributed in such a 
way that the block with the largest radius contains 
two double layers. This arrangement has the lowest 
stress energy of all possible cases of 10 double layers 
distributed among 9 mosaic blocks [Fig. 5@)]. 

3. The model having 5 blocks separated by 4 cylin- 
drical azimuthal boundaries. Every mosaic block 
contains two double layers [Fig. 5(c)]. 

Figs. 6(a) and (b) are the results of similar computa- 
tions performed for the incomplete cylindrical crystal 
with azimuthal extension re. The considerable sensi- 
tivity of the form of the profile (especially 031) can 
be deduced from these computations. 

One of the most important characteristics of the cy- 
lindrical crystal is its mean radius. Whittaker (1955b) 
pointed out the dependence of the position of reflex- 
ions Okl on the mean radius. We have dealt with this 
question in more detail and performed numerical com- 
putations to determine the form of reflexions 060, 011, 
031,033 for the mean radii 85, 135 and 235 A. 

In all our models we used the complete cylindrical 
crystal with the wall of 5 unit cells devided in 10 mosaic 
blocks by 9 cylindrical azimuthal boundaries. Results 
are shown in Fig. 7. 

In Fig. 8(a) the deviation (the per cent difference be- 
tween the position of the reflexion due to the cylindrical 
lattice and the position calculated for the limiting lat- 
tice) on the mean radius of the cylindrical lattice is 
shown for above mentioned models. 

In Fig. 8(b) the dependence of the deviation on the 
mean radius is shown for the reflexion 011 for different 
cases of the incomplete cylindrical lattice (5 unit cells 
thick, 10 blocks). 

Also the widths of the re flexions Okl depend strongly 
on the mean radius of the cylindrical lattice. In Fig. 9 
the dependence of half-height width (B1/2) is shown for 
several Okl reflexions for the same models as used pre- 
viously. 

We can see that BI/2 increases with decreasing radius 
of the lattice. This is caused by increasing strains inside 
mosaic blocks resulting from the decrease of the radius. 

A relatively extensive study was undertaken on the 
effect of cylinder incompleteness on the form of the 
reflexion 011. We confined ourselves to the reflexion 
011, because the calculation is rather time-consuming 
and the time needed increases greatly with increasing 
radial reciprocal coordinate of the reflexion. The com- 
putations were performed again for a cylindrical crys- 
tal with the wall thickness of 5 a-translations consisting 
of 10 mosaic blocks separated by 9 cylindrical azi- 
muthal boundaries. The number of b-translations per 
unit of the azimuthal angle in every mosaic block was 
again equal to the mean block radius divided by 9.25 A. 
In Fig. 10 there are profiles of the 011 reflexion for the 
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~ d 

4 8 12 16 20 

10-4A-1 

Fig. 11. The half-height width versus the reciprocal value of the 
mean length of arc for incomplete cylindrical lattice of mean 
radius (a) 85 A; (b) 135 A; (c) 235/~; (d) infinite. The 
numbers of double layers and imperfections are in Fig.7. 
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Fig. 12. The influence of the radial wall thickness on the form 
of the reflexion 011 (mean radius 135 A). Complete cylin- 
drical lattice with maximum number of cylindrical azimuthal 
boundaries. Dot-dashed line, 6 double layers; dashed line 
10, double layers; solid line, 14 double layers. 
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Fig. 13. The influence of the radial wall thickness on the form of reflexion 031. The same models as for Fig. 12. 

incomplete crystal of extension zc/4 for mean radii 85, 
135 and 235/~. In Fig. 11 we show the dependence of 
the half-height width of the 011 reflexion on the recip- 
rocal value of the mean length of arc for the incomplete 
cylindrical crystals of radii 85, 135 and 235/~. We can 
see that with decreasing arc length the curves approach 
closer to the straight line representing the pure par- 
ticle-size broadening for a conventional translation lat- 
tice. 

The influence of the wall thickness of the cylindrical 
crystal on the diffraction profile 011 and 031 for the 
same mean radius was also studied (Figs. 12 and 13). 
The computation was performed for a model of com- 
plete cylindrical lattice of chrysotile of wall thicknesses 
of 3a, 5a and 7a, split into 6, 10 and 14 mosaic blocks 
by the cylindrical azimuthal boundaries. We can see 
that the changes of the wall thickness have only a small 
effect on the position of  the reflexion and on its width. 
The only major change is in the magnitude of the fluc- 
tuations which decrease rapidly with increasing wall 
thickness. 

Conclusions 

Within the validity of the foregoing assumptions we 
can make these conclusions: 

1. The wall thickness of the cylindrical lattice can be 
deduced from the width of zero-order reflexions on 
the equator (h00). 

2. The number of mosaic blocks separated by the cy- 
lindrical axial boundary can be determined from the 
ratio of the width of the reflexions on the higher 
layer lines to those on the equator. 

3. The radius of the cylindrical lattice can be deter- 
mined from the shift of the positions of the reflex- 
ions involving high order Bessel functions, especially 
of 011 and 033. 

4. The length of the arc of the incomplete cylindrical 
lattice (or of the mosaic blocks limited by planar 
axial or planar incoherent boundaries) can be deter- 
mined from the width of 011 reflexions. 

5. The number of cylindrical azimuthal boundaries can 
be guessed from the form of the 033 reflexion. 

In the next paper we shall apply these results to a 
number of profile and position measurements of dif- 
ferent chrysotile samples. 
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